Как работает ледокол? Современные российские ледоколы Как устроен ледокол корабль схема.

Атомный ледокол "Ямал" является одним из десяти ледоколов класса "Арктика", сооружение которого было начато в 1986, еще во времена СССР. Сооружение ледокола "Ямал" было закончено в 1992 году, но уже в это время надобность в его использовании для обеспечения судоходства по Северному морскому пути отпала. Поэтому владельцы этого судна, имеющего вес 23455 тонны и длиной 150 метров, переоборудовали его в судно, имеющее 50 туристических кают, и способное доставить туристов на Северный Полюс.

"Сердцем" ледокола "Ямал" являются два герметичных водоохлаждаемых реактора ОК-900А, в которых находятся 245 топливных стержней с обогащенным ураном. Полная загрузка ядерного топлива составляет порядка 500 килограмм, этого запаса достаточно для непрерывного функционирования ледокола в течение 5 лет. Каждый ядерный реактор весит около 160 тонн и располагается в герметичном отсеке, огражденном от остальной конструкции судна слоями из стали, воды и бетона повышенной плотности. Вокруг реакторного отсека и по всему судну размещены 86 датчиков, измеряющих уровни радиации.

Паровые энергетические котлы реакторов вырабатывают перегретый пар высокого давления, который вращает турбины, приводящие в движение 12 электрогенераторов. Энергия от генераторов подается на электродвигатели, вращающие лопасти трех гребных винтов ледокола. Мощность двигателей каждого гребного винта составляет 25 тысяч лошадиных сил или 55.3 МВт. Используя эту мощность, ледокол "Ямал" может двигаться сквозь лед, толщиной 2.3 метра, со скоростью 3 узла. Несмотря на то, что максимальная толщина льда, сквозь который может пройти ледокол, равняется 5 метрам, были зарегистрированы случаи преодоления ледоколом ледяных торосов, толщиной в 9 метров.

Корпус ледокола "Ямал" является двойным корпусом, покрытым специальным полимерным материалом, уменьшающим трение. Толщина верхнего слоя корпуса в месте рубки льда составляет 48 миллиметров, а в остальных местах - 30 миллиметров. Водная балластная система, располагающаяся между двумя слоями корпуса ледокола, позволяет сосредоточить дополнительный вес в передней части судна, который действует как дополнительный таран. Если мощности ледокола не хватает для прорубки льда, то подключается воздушная пузырьковая система, которая выбрасывает 24 кубометра воздуха в секунду под поверхность льда и ломает его снизу.

Конструкция системы охлаждения реакторов атомного ледокола "Ямал" рассчитана на использование забортной воды с максимальной температурой в 10 градусов Цельсия. Поэтому этому ледоколу и другим ему подобным никогда не получится покинуть северные моря и выйти в более южные широты.

Россия обладает единственным атомным ледокольным флотом в мире, задачей которого является обеспечение судоходства по северным морям и освоение арктического шельфа. Атомные ледоколы могут длительно находиться на трассах Севморпути, не нуждаясь в заправке.

В настоящее время в состав действующего флота входят атомоходы «Россия», «Советский Союз», «Ямал», «50 лет Победы», «Таймыр» и «Вайгач», а также атомный лихтеровоз-контейнеровоз «Севморпуть». Их эксплуатацией и обслуживанием занимается «Росатомфлот», находящийся в Мурманске.

Атомный ледокол - морское судно с ядерной силовой установкой, построенное специально для использования в водах, круглогодично покрытых льдом. Атомные ледоколы намного мощнее дизельных. В СССР они были разработаны для обеспечения судоходства в холодных водах Арктики.

За период 1959–1991 гг. в Советском Союзе было построено 8 атомных ледоколов и 1 атомный лихтеровоз – контейнеровоз.
В России за период с 1991 года и по настоящее время построены еще два атомных ледокола: «Ямал» (1993 г.) и «50 лет Победы» (2007 г.).
Сейчас ведется строительство еще трех атомных ледоколов водоизмещением более 33 тыс тонн, ледопроходимостьью - почти три метра. Первый из них будет готов к 2017 году.

Всего на атомных ледоколах и кораблях, находящихся на базе атомного флота Атомфлот работает более 1100 человек.

«Советский Союз» (атомный ледокол класса «Арктика»)

Ледоколы класса «Арктика» - основа российского атомного ледокольного флота: 6 из 10 атомных ледоколов относятся к этому классу. Суда имеют двойной корпус, могут ломать лёд, двигаясь как вперёд, так и назад. Эти корабли спроектированы для работы в холодных арктических водах, что усложняет эксплуатацию ядерной установки в тёплых морях. Отчасти поэтому пересечение тропиков для работы у берегов Антарктиды в число их задач не входит.

Водоизмещение ледокола - 21 120 тонн, осадка – 11,0 м, максимальная скорость хода на чистой воде - 20,8 узлов.

Особенность конструкции ледокола «Советский Союз» состоит в том, что в любой момент времени его можно дооборудовать в боевой крейсер. Изначально судно использовалось для арктического туризма. Совершая трансполярный круиз, с его борта удалось установить метеорологические ледовые станции, работающие в автоматическом режиме, а также американский метеорологический буй.

Отделение ГТГ (главных турбогенераторов)

Атомный реактор нагревает воду, которая превращается в пар, который раскручивает турбины, которые возбуждают генераторы, которые вырабатывают электричество, которое поступает в электромоторы, которые крутят гребные винты.

ЦПУ (Центральный пост управления)

Управление ледоколом сосредоточено в двух основных командных постах: ходовой рубке и центральном посту управления энергетической установкой (ЦПУ). Из ходовой рубки производят общее руководство работой ледокола, а из ЦПУ - управление работой энергетической установки, механизмов и систем и контроль за их работой.

Надежность атомоходов класса «Арктика» проверена и доказана временем, за более чем 30-летнюю историю атомоходов этого класса не было ни единой аварии, связанной с ядерной энергетической установкой.

Кают-компания для питания командного состава. Столовая для рядового состава расположена палубой ниже. Рацион состоит из полноценного четырехразового питания.

«Советский Союз» введен в эксплуатацию в в 1989 году, при установленном сроке службы в 25 лет. В 2008 году Балтийский завод поставил для ледокола оборудование, которое позволяет продлить срок эксплуатации судна. В настоящее время ледокол планируется к восстановлению, но только после того, как будет определён конкретный заказчик или пока не будет увеличен транзит по Севморпути, и не появятся новые участки работ.

Атомный ледокол «Арктика»

Спущен на воду в 1975 году и считался крупнейшим из всех существующих на тот период времени: его ширина составляла 30 метров, длина - 148 метров, а высота борта - более 17 метров. На судне были созданы все условия, позволяющие базироваться летному составу и вертолету. «Арктика» была способна проламывать лед, толщина которого составляла пять метров, а также передвигаться на скорости в 18 узлов. Явным отличием считалась и необычная окраска судна (ярко-рыжая), которая олицетворяла собой новую мореплавательскую эпоху.

Атомный ледокол «Арктика» прославился тем, что он был первым судном, которому удалось достичь Северного полюса. В настоящее время выведен из эксплуатации и ожидается решение по его утилизации.

«Вайгач»

Мелкосидящий атомный ледокол проекта «Таймыр». Отличительная черта данного проекта ледоколов - уменьшенная осадка, позволяющая обслуживать суда следующие по Северному Морскому Пути с заходом в устья сибирских рек.

Капитанский мостик

Пульты дистанционного управления тремя гребными электродвиггателями, также на пульте расположены приборы контроля и за буксирным устройством, панель управления камерой наблюдения за буксиром, индикаторы лага, эхолотов,репитер гирокомпаса, УКВ-радиостанции, пульт управления стеклоочистительными щетками и прочее джойстик управления ксеноновым прожектиором 6 кВт.

Машинные телеграфы

Основное применение «Вайгача» - сопровождение кораблей с металлом из Норильска и судов с лесом и рудой от Игарки до Диксона.

Главная силовая установка ледокола состоит из двух турбогенераторов, которые обеспечат на валах максимальную длительную мощность около 50 000 л. с., что позволит форсировать лед толщиной до двух метров. При толщине льда в 1,77 метров скорость ледокола составляет 2 узла.

Помещение среднего гребного вала.

Управление направления движения ледокола осуществляется с помощью электрогидравлической рулевой машины.

Бывший кинозал

Сейчас на ледоколе в каждой каюте есть телевизор с разводкой для трансляции судового видеоканала и спутникового телевидения. А кинозал используется для общесудовых собраний и культурно-массовых мероприятий.

Рабочий кабинет блочной каюты второго старпома. Длительность нахождения атомоходов в море зависит от количества запланированных работ, в среднем это составляет 2-3 месяца. Экипаж ледокола "Вайгач" состоит из 100 человек.

Атомный ледокол «Таймыр»

Ледокол идентичен «Вайгачу». Был построен в конце 1980-х годов в Финляндии на судоверфи Wärtsilä («Вяртсиля Морская Техника») в Хельсинки по заказу Советского Союза. Однако оборудование (силовая установка и т др.) на судне было установлено советское, использовалась сталь советского производства. Установка атомного оборудования производилась в Ленинграде, куда корпус ледокола был отбуксирован в 1988 году.

«Таймыр» в доке судоремонтного завода

«Таймыр» ломает лед классически: мощный корпус наваливается на препятствие из замерзшей воды, разрушая ее собственным весом. За ледоколом образуется канал, по которому могут двигаться обычные морские суда.


Для улучшения ледопроходимости "Таймыр" оборудован системой пневмообмыва, которая препятствует облипанию корпуса битым льдом и снегом. Если прокладка канала тормозится из-за толстого льда, в део вступают дифферентная и креновая системы, которые состоят из цистерн и насосов. Благодаря этим системам ледокол может крениться то на один борт, то на другой, поднимать выше нос или корму. От подобных движений корпуса окружающее ледокол ледовое поле дробится, позволяя двигаться дальше.

Для окраски наружных конструкций, палуб и переборок используются импортные двухкомпонентные эмали на акрилловой основе повышенной стойкости к атмосферным воздействиям, устойчивые к истиранию и ударным нагрузкам. Краска кладется на три слоя: один слой грунта и два слоя эмали.

Скорость хода такого ледокола составляет 18,5 узлов (33,3 км/ч)

Ремонт винто-рулевого комплекса

Установка лопасти

Болты крепления лопасти к ступице гребного винта, каждая из четырех лопасть крепится девятью болтами.

Практически все суда ледокольного флота России оснащены гребными винтами, изготовленными на заводе «Звездочка».

Атомный ледокол «Ленин»

Этот ледокол, спущенный на воду 5 декабря 1957, стал первым в мире судном, оснащенным ядерной силовой установкой. Самыми главными его отличиями высокий уровень автономности и мощность. На протяжении первых шести лет использования атомный ледокол преодолел более 82 000 морских миль, проведя свыше 400 судов. Позже «Ленин» первым из всех судов окажется севернее Северной Земли.

Ледокол «Ленин» проработал 31 год и в 1990 году был выведен из эксплуатации и поставлен на вечную стоянку в Мурманске. Сейчас на ледоколе действует музей, ведутся работы по расширению экспозиции.

Отсек в котором находились две атомные установки. Внутрь заходили двое дозиметристов, измерявших уровень радиации и контролировавших работу реактора.

Существует мнение, что именно благодаря "Ленину" закрепилось выражение "мирный атом". Ледокол строился в самый разгар "холодной войны", но имел абсолютно мирные цели - развитие Северного морского пути и провод гражданских судов.

Ходовая рубка

Парадная лестница

Одни из капитанов АЛ «Ленин», Павел Акимович Пономарев, ранее был капитаном «Ермака» (1928-1932) - первого в мире ледокола арктического класса.

В качестве бонуса пара фотографий Мурманска...

Мурманск

Крупнейший в мире город, расположенный за Северным полярным кругом. Он находится на скалистом восточном побережье Кольского залива Баренцева моря.

Основой экономики города является Мурманский морской порт - один из крупнейших незамерзающих портов в России. Мурманский порт является портом приписки барка «Седов», самого большого парусника в мире.

"Суперсооружения" - Ледоколы (док. фильм)


Я понимаю,что это все является масштабным повторением огромного количества фотографий людей посетивших на экскурсиях корабль,тем более,что водят по одним и тем же местам.Но мне было интересно самому в этом разобраться.

Это наш гид по атомоходу:

Речь шла о создании такого судна, которое очень долго может плавать без захода в порты за топливом.
Ученые подсчитали, что атомный ледокол будет расходовать в сутки 45 граммов ядерного горючего - столько, сколько уместится в спичечной коробке. Вот почему атомоход, практически имея неограниченный район плавания, сможет побывать за один рейс и в Арктике, и у берегов Антарктиды. Для судна с атомной энергетической установкой дальность расстояния - не препятствие.

Первоначально нас собрали в этом зале для кратенького введения в экскурсию и разделили на две группы.

Адмиралтейцы имели немалый опыт по ремонту и строительству ледоколов. Еще в 1928 г. они капитально отремонтировали "дедушку ледокольного флота" - знаменитый "Ермак".
Строительство ледоколов и ледокольно-транспортных судов на заводе было связано с новым этапом в развитии советского судостроения - применением электросварки вместо клепки. Коллектив завода был одним из инициаторов этого новшества. Новый метод успешно испытали на строительстве ледоколов типа "Седов". Ледоколы "Охотск", "Мурман", "Океан", при постройке которых широко применялась электросварка, показали прекрасные эксплуатационные качества; их корпус оказался более прочным по сравнению с другими судами.

Перед Великой Отечественной войной на заводе построили крупное ледокольно-транспортное судно "Семен Дежнев", которое сразу же после ходовых испытаний направилось в Арктику для вывода зазимовавших там караванов. Вслед за "Семеном Дежневым" было спущено на воду ледокольно-транспортное судно "Леваневский". После войны завод построил еще один ледокол и несколько самоходных паромов ледокольного типа.
Над проектом трудился большой научный коллектив, возглавляемый выдающимся советским физиком академиком А. П. Александровым. Под его руководством работали такие крупные специалисты как И. И. Африкантов, А. И. Брандаус, Г. А. Гладков, Б. Я. Гнесин, В. И. Неганов, Н. С. Хлопкин, А. Н. Стефанович и Другие.

Поднимаемся на этаж выше

Размеры атомохода были выбраны с учетом требований эксплуатации ледоколов на Севере и обеспечения его наилучших мореходных качеств: длина ледокола 134 м, ширина 27,6 м, мощность на валу 44 000 л. с., водоизмещение 16000 т, скорость хода 18 узлов на чистой воде и 2 узла во льдах толщиной более 2 м.

Длинные коридоры

Запроектированная мощность турбоэлектрической установки не имеет себе равных. Атомный ледокол по своей мощности в два раза превосходит американский ледокол "Глетчер", считавшийся крупнейшим в мире.
Особое внимание при проектировании корпуса судна было обращено на форму носовой оконечности, от которой во многом зависят ледокольные качества судна. Выбранные для атомохода обводы по сравнению с существующими ледоколами позволяют увеличить давление на лед. Кормовая оконечность спроектирована так, что обеспечивает проходимость во льдах при заднем ходе и надежную защиту винтов и руля от ударов льда.

Столовая:
А камбуз? Это полностью электрифицированный комбинат со своей хлебопекарней,горячая пища на электрическом лифте подается из кухни в столовые.

В практике наблюдалось, что ледоколы иногда застревали во льдах не только носом или кормой, но и бортами. Чтобы избежать этого, было решено устроить на атомоходе специальные системы балластных цистерн. Если из цистерны одного борта перекачать воду в цистерну другого борта, то судно, раскачиваясь из стороны в сторону, будет ломать и раздвигать лед бортами. Такая же система цистерн установлена в носу и в корме. А если ледокол не сломает лед с ходу и нос его застрянет? Тогда можно перекачать воду из кормовой дифферентной цистерны в носовую. Давление на лед увеличится, он сломается, и ледокол выйдет из ледового плена.
Чтобы обеспечить непотопляемость такого большого судна, в случае если обшивка будет повреждена, корпус решили подразделить на отсеки одиннадцатью главными поперечными водонепроницаемыми переборками. При расчете атомного ледокола конструкторы обеспечили непотопляемость судна при затоплении двух наибольших отсеков.

Коллектив строителей полярного гиганта возглавил талантливый инженер В. И. Червяков.

В июле 1956 г. была заложена первая секция корпуса атомного ледокола.
Для разбивки на плазе теоретического чертежа корпуса требовалась огромная площадь - около 2500 квадратных метров. Вместо этого разбивку произвели на особом щите с помощью специального инструмента. Это позволило сократить площадь для разметки. Затем изготавливались чертежи-шаблоны, которые фотографировались на фотопластинки. Проекционный аппарат, в который помещали негатив, воспроизводил на металле световой контур детали. Фотооптический метод разметки позволил снизить трудоемкость плазовых и разметочных работ на 40%.

Попадаем в машинный отсек

Атомный ледокол как наиболее мощное судно во всем ледокольном флоте предназначен для борьбы со льдами в самых тяжелых условиях; поэтому его корпус должен быть особенно прочным. Высокую прочность корпуса решено было обеспечить применением стали новой марки. Эта сталь обладает повышенной ударной вязкостью. Она хорошо сваривается и имеет большую сопротивляемость распространению трещин при низких температурах.

Конструкция корпуса атомохода, система его набора также отличалась от других ледоколов. Днище, борта, внутренние палубы, платформы и верхняя палуба в оконечностях набирались по поперечной системе набора, а верхняя палуба в средней части ледокола - по продольной системе.
Корпус высотой в добрый пятиэтажный дом состоял из секций весом до 75 т. Таких крупных секций насчитывалось около двухсот.

Сборку и сварку таких секций вел участок предварительной сборки корпусного цеха.

Интересно отметить, что на атомоходе имеются две электростанции, способные обеспечить энергией город с 300-тысячным населением. На судне не нужны ни машинисты, ни кочегары: вся работа электростанций автоматизирована.
Следует сказать о новейших электродвигателях гребных винтов. Это- уникальные машины, изготовленные в СССР впервые, специально для атомохода. Цифры говорят за себя: вес среднего двигателя 185 т, мощность почти 20000 л. с. Двигатель пришлось доставить на ледокол в разобранном виде, по частям. Погрузка двигателя на судно представляла большие трудности.

Здесь тоже любят чистоту

С участка предварительной сборки готовые секции поступали прямо на стапель. Сборщики и проверщики без промедления устанавливали их на место.
При изготовлении узлов для первых опытно-штатных секций выяснилось, что стальные листы, из которых они должны быть изготовлены, весят 7 т, а имевшиеся на заготовительном участке подъемные краны обладали грузоподъемностью только до 6 т.
Прессы тоже были недостаточной мощности.

Следует рассказать еще об одном поучительном примере тесного содружества рабочих, инженеров и ученых.
По утвержденной технологии конструкции из нержавеющей стали сваривались вручную. Было проведено более 200 экспериментов; наконец, режимы сварки были отработаны. Пять сварщиков-автоматчиков заменили 20 сварщиков-ручников, которых перевели работать на другие участки.

Был, например, такой случай. Из-за очень больших габаритов нельзя было доставить по железной дороге на завод фор- и ахтерштевень - основные конструкции носа и кормы судна. Массивные, тяжелые, весом 30 и 80 г, - они не помещались ни на каких железнодорожных платформах. Инженеры и рабочие решили изготовить штевни непосредственно на заводе, сварив их отдельные части.

Чтобы представить сложность сборки и сварки монтажных стыков этих штевней, достаточно сказать, что минимальная толщина свариваемых частей достигала 150 мм. Сварка форштевня продолжалась 15 суток в 3 смены.

Пока на стапеле воздвигался корпус, в различных цехах завода изготавливались и монтировались детали, трубопроводы, приборы. Многие из них поступали с других предприятий. Главные турбогенераторы строились на Харьковском электромеханическом заводе, гребные электродвигатели - на ленинградском заводе "Электросила" имени С. М. Кирова. Такие электродвигатели создавались в СССР впервые.
В цехах Кировского завода собирались паровые турбины.

Использование новых материалов потребовало изменения многих установившихся технологических процессов. На атомоходе монтировались трубопроводы, которые соединялись раньше путем спайки.
В содружестве со специалистами сварочного бюро завода работники монтажного цеха разработали и внедрили электродуговую сварку труб.

Для атомохода потребовалось несколько тысяч труб различной длины и диаметра. Специалисты подсчитали, что если трубы вытянуть в одну линию, их длина составит 75 километров.

Наконец подоспело время завершения стапельных работ.
Перед спуском возникала то одна трудность, то другая.
Так, нелегким делом оказалась установка тяжелого пера руля. Поставить его на место обычным способом не позволяла сложная конструкция кормовой оконечности атомохода. Кроме того, к моменту установки огромной детали верхнюю палубу уже закрыли. В этих условиях рисковать было нельзя. Решили провести "генеральную репетицию" - поставили сначала не настоящий баллер, а его "двойник" - деревянный макет таких же размеров. "Репетиция" удалась, расчеты подтвердились. Вскоре многотонная деталь была быстро заведена на место.

Спуск ледокола на воду был уже не за горами. Большой спусковой вес судна (11 тысяч тонн) затруднял проектирование спускового устройства, хотя специалисты занимались этим устройством почти с момента закладки первых секций на стапеле.

По расчетам проектной организации, для осуществления спуска ледокола "Ленин" на воду требовалось удлинить подводную часть спусковых дорожек и углубить дно за котлованом стапеля.
Группа работников конструкторского бюро завода и корпусного цеха, разработала более совершенное спусковое устройство по сравнению с первоначальным проектом.

Впервые в практике отечественного судостроения было применено сферическое деревянное поворотное устройство и целый ряд других новых конструктивных решений.
Для уменьшения спускового веса, обеспечения большей устойчивости при спуске на воду и торможения судна, сошедшего со стапеля на воду, под корму и нос завели специальные понтоны.
Корпус ледокола был освобожден от строительных лесов. Окруженный портальными кранами, сверкая свежей краской, он был готов отправиться в свой первый короткий путь - на водную гладь Невы.

Идем дальше

Спускаемся

. . . ПЭЖ. Непосвященному человеку эти три буквы ничего не говорят. ПЭЖ - пост энергетики и живучести - мозг управления ледоколом. Отсюда с помощью приборов-автоматов инженеры-операторы - люди новой на флоте профессии - могут на расстоянии управлять работой парогенераторной установки. Отсюда поддерживается необходимый режим работы "сердца" атомохода - реакторов.

Опытные моряки, много лет плавающие на судах различных типов, удивляются: специалисты ПЭЖ поверх обычной морской формы носят белоснежные халаты.

Пост энергетики и живучести, а также ходовая рубка и каюты экипажа расположены в центральной надстройке.

А теперь дальше по истории:

5 декабря 1957 г. С утра непрерывно моросил дождь, временами падал мокрый снег. С залива дул резкий, порывистый ветер. Но люди словно не замечали хмурой ленинградской погоды. Задолго до спуска ледокола площадки вокруг стапеля заполнились людьми. Многие поднялись на строившийся по соседству танкер.

Ровно в полдень атомоход "Ленин" встал на якорь в том самом месте, где в памятную ночь 25 октября 1917 г. стояла "Аврора" - легендарный корабль Октябрьской революции.

Строительство атомохода вступило в новый период -началась его достройка на плаву.

Атомная энергетическая установка - важнейший участок ледокола. Над конструированием реактора трудились виднейшие ученые. Каждый из трех реакторов по своей мощности почти в 3,5 раза превосходит реактор первой в мире атомной электростанции Академии Наук СССР.

ОК-150 «Ленин» (до 1966г.)
Номинальная мощность реактора, ВМт 3х90
Номинальная паро-производительность, т/ч 3х120
Мощность на винтах, л/с 44 000

Компоновка всех установок - блочная. Каждый блок включает в себя реактор водо-водяного типа (т.е. вода является и теплоносителем, и замедлителем нейтронов), четыре циркуляционных насоса и четыре парогенератора, компенсаторы объема, ионообменный фильтр с холодильником и другое оборудование.

Реактор, насосы и парогенераторы имеют отдельные корпуса и соединены друг с другом короткими патрубками типа «труба в трубе». Все оборудование расположено вертикально в кессонах бака железоводной защиты и закрыто малогабаритными блоками защиты, что обеспечивает легкую доступность при ремонтных работах.

Ядерный реактор- это техническая установка, в которой осуществляется управляемая цепная реакция деления ядер тяжелых элементов с освобождением ядерной энергии. Реактор состоит из активной зоны и отражателя. Реактор водо-водяного типа - вода в нем является и замедлителем быстрых нейтронов и охлаждающей и теплообменной средой Активная зона содержит ядерное топливо в защитном покрытии (тепловыделяющие элементы - ТВЭЛы) и замедлитель. ТВЭЛы, имеющие вид тонких стержней, собраны в пучки и заключены в чехлы. Такие конструкции называются тепловыделяющими сборками ТВС.

ТВЭЛы, имеющие вид тонких стержней, собраны в пучки и заключены в чехлы. Такие конструкции называются тепловыделяющими сборками (ТВС). Активная зона реактора представляет собой совокупность активных частей свежих тепловыделяющих сборок (СТВС), которые в свою очередь состоят из тепловыделяющих элементов (ТВЭЛ). В реактор помещаются 241 СТВС. Ресурс современной активной зоны (2,1- 2,3 млн. МВт час.) обеспечивает энергетические потребности судна с ЯЭУ в течение 5-6 лет. После того, как энергоресурс активной зоны исчерпан, проводится перезарядка реактора.

Корпус реактора с эллиптическим днищем изготовлен из низколегированной теплостойкой стали с антикоррозийной наплавкой на внутренних поверхностях.

Принцип действия АППУ
Тепловая схема ППУ атомного судна состоит из 4-х контуров.

Через активную зону реактора прокачивается теплоноситель I контура (вода высокой степени очистки). Вода нагревается до 317 градусов, но не превращается в пар, поскольку находится под давлением. Из реактора теплоноситель 1 контура поступает в парогенератор, омывая трубы, внутри которых протекает вода II контура, превращающаяся в перегретый пар. Далее теплоноситель I контура циркуляционным насосом снова подается в реактор.

Из парогенератора перегретый пар (теплоноситель II контура) поступает на главные турбины. Параметры пара перед турбиной: давление - 30 кгс/см2 (2,9 МПа), температура - 300 °С. Затем пар конденсируется, вода проходит систему ионообменной очистки и снова поступает в парогенератор.

III контур предназначен для охлаждения оборудования АППУ, в качестве теплоносителя используется вода высокой чистоты (дистиллят). Теплоноситель III контура имеет незначительную радиоактивность.

IV контур служит для охлаждения воды в системе III контура, в качестве теплоносителя используется морская вода. Также IV контур используется для охлаждения пара II контура при разводке и расхолаживании установки.

АППУ выполнена и размещена на судне таким образом, чтобы обеспечить защиту экипажа и населения от облучения, а окружающую среду - от загрязнения радиоактивными веществами в пределах допустимых безопасных норм как при нормальной эксплуатации, так и при авариях установки и судна за счет. С этой целью на возможных путях выхода радиоактивных веществ созданы четыре защитных барьера между ядерным топливом и окружающей средой:

первый - оболочки топливных элементов активной зоны реактора;

второй - прочные стенки оборудования и трубопроводов первого контура;

третий - защитная оболочка реакторной установки;

четвертый - защитное ограждение, границами которого являются продольные и поперечные переборки, второе дно и настил верхней палубы в районе реакторного отсека.

Каждый хотел почуствовать себя немножко героем:-)))

В 1966 году было установлено два ок-900 вместо трех ок-150

ОК-900 “Ленин”
Номинальная мощность реактора, ВМт 2x159
Номинальная паро-производительность, т/ч 2x220
Мощность на винтах, л/с 44000

Помещение перед реакторным отсеком

Окна в реакторный отсек

В феврале 1965 г. произошла авария во время плановых ремонтных работ на реакторе №2 атомного ледокола "Ленин". В результате ошибки операторов активная зона на некоторое время была оставлена без воды, что вызвало частичное повреждение примерно 60% тепловыделяющих сборок.

При поканальной перегрузке удалось выгрузить из активной зоны лишь 94 из них, остальные 125 оказались неизвлекаемыми. Эта часть была выгружена вместе с экранной сборкой и помещена в специальный контейнер, который был заполнен твердеющей смесью на основе футурола и затем хранился в береговых условиях около 2 лет.

В августе 1967 г. реакторный отсек с ядерной энергетической установкой ОК-150 и собственными герметичными переборками был затоплен непосредственно с борта ледокола "Ленин" через днище в мелководном заливе Цивольки в северной части архипелага Новая Земля на глубине 40-50 м.

Перед затоплением из реакторов было выгружено ядерное топливо, а их первые контуры промыты, осушены и герметизированы. По данным ЦКБ "Айсберг", реакторы перед затоплением были заполнены твердеющей смесью на основе футурола.

Контейнер со 125 отработавшими тепловыделяющими сборками, заполненный футуролом, был перенесен с берега, размещен внутри специального понтона и затоплен. К моменту аварии судовая ядерная энергетическая установка проработала около 25.000 часов.

После этого ок-150 и были заменены на ок-900
Еще раз о принципах работы:
Как действует атомная энергетическая установка ледокола?
В реакторе в особом порядке помещаются стержни урана. Система урановых стержней пронизывается роем нейтронов, своего рода "запалов", вызывающих распад атомов урана с выделением огромного количества тепловой энергии. Стремительное движение нейтронов укрощается замедлителем. Мириады управляемых атомных взрывов, вызванных потоком нейтронов, происходят в толще урановых стержней. В результате образуется так называемая цепная реакция.
Чб фотографии не мои

Особенность атомных реакторов ледокола состоит в том, что в качестве замедлителя нейтронов применен не графит, как на первой советской атомной электростанции, а дистиллированная вода. Урановые стержни, помещенные в реактор, окружены чистейшей водой (дважды дистиллированной). Если ею наполнить до горлышка бутылку, то абсолютно нельзя будет заметить, налита в бутылку вода или нет: настолько прозрачна вода!
В реакторе вода нагревается выше температуры плавления свинца - более 300 градусов. Вода при этой температуре не закипает потому, что находится под давлением в 100 атмосфер.

Вода, находящаяся в реакторе, радиоактивна. С помощью насосов ее прогоняют через специальный аппарат-парогенератор, где она своим теплом превращает в пар уже нерадиоактивную воду. Пар поступает в турбину, вращающую генератор постоянного тока. Генератор питает током гребные электродвигатели. Отработавший пар направляется в конденсатор, где снова превращается в воду, которая насосом опять нагнетается в парогенератор. Таким образом,в системе сложнейших механизмов происходит своеобразный круговорот воды.
Ч-б фотографии взяты мною из интернета

Реакторы установлены в специальные металлические барабаны, вваренные в бак из нержавеющей стали. Сверху реакторы закрыты крышками, под которыми расположены различные приспособления для автоматического подъема и перемещения урановых стержней. Всю работу реактора контролируют приборы, а при необходимости в действие вступают "механические руки"-манипуляторы, которыми можно управлять издали, находясь за пределами отсека.

В любое время реактор можно осмотреть с помощью телевизора.
Все, что представляет опасность своей радиоактивностью, тщательно изолировано и расположено в специальном отсеке.
Система дренажей отводит опасные жидкости в особую цистерну. Имеется также система и для улавливания воздуха со следами радиоактивности. Воздушный поток из центрального отсека выбрасывается через грот-мачту на высоту 20 м.
Во всех уголках судна можно увидеть специальные приборы-дозиметры, готовые в любой момент известить о повышенной радиоактивности. Кроме того, каждый член экипажа снабжен индивидуальным дозиметром карманного типа. Безопасная эксплуатация ледокола обеспечена полностью.
Конструкторы атомохода предусмотрели всевозможные случайности. Если выйдет из строя один реактор, то его заменит другой. Одну и ту же работу на судне могут выполнить несколько групп одинаковых механизмов.
Таков основной принцип работы всей системы атомной энергетической установки.
В отсеке, где помещаются реакторы, имеется огромное количество труб сложных конфигураций и больших размеров. Трубы необходимо было соединять не как обычно, при помощи фланцев, а сваривать встык с точностью до одного миллиметра.

Одновременно с монтажом атомных реакторов быстрым темпом устанавливались главные механизмы машинного отделения. Здесь монтировались паровые турбины, вращающие генераторы,
на ледоколе; только одних электродвигателей различной мощности на атомоходе более пятисот!

Коридор перед медпунктом

Пока шел монтаж энергетических систем, инженеры работали над тем, как лучше и быстрее смонтировать и ввести в строй систему управления судовыми механизмами.
Все управление сложным хозяйством ледокола осуществляется автоматически, непосредственно из ходовой рубки. Отсюда капитан может изменить режим работы гребных двигателей.

Собственно медпункт:Медицинские кабинеты - терапевтический, зубоврачебный рентгеновский, физиотерапевтический, операционная? процедур: юя а также лаборатория и аптека - оборудованы новейшей лечебно-профилактической аппаратурой.

Работы, связанные со сборкой и установкой надстройки судна, Предстояла нелегкая задача: собрать огромную надстройку, весившую около 750 т. В цехе были построены для ледокола также катер с водометным движителем, грот- и фокмачты.
Собранные в цехе четыре блока надстройки были доставлены на ледокол и здесь установлены плавучим краном.

На ледоколе предстояло выполнить огромный объем изоляционных работ. Площадь изоляции составляла около 30000 м2. Для изоляции помещений применялись новые материалы. Ежемесячно предъявлялось для приемки по 100-120 помещений.

Швартовные испытания - третий по счету (после стапельного периода и достройки на плаву) этап сооружения каждого судна.

До запуска парогенераторной установки ледокола пар должен был подаваться с берега. Устройство паропровода осложнялось отсутствием специальных гибких шлангов большого сечения. Применить паропровод из обычных металлических труб, намертво закрепленных, не представлялось возможным. Тогда по предложению группы новаторов применили особое шарнирное устройство, обеспечивавшее надежную подачу пара по паро-проводу на борт атомохода.

Первыми были запущены и испытаны пожарные электронасосы, а потом и вся пожарная система. Затем, начались испытания вспомогательной котельной установки.
Двигатель заработал. Дрогнули стрелки приборов. Минута, пять, десять. . . Двигатель работает отлично! А через некоторое время монтажники приступили к регулировке приборов, контролирующих температуру воды и масла.

При испытании вспомогательных турбогенераторов и дизель-генераторов понадобились специальные устройства, позволяющие загружать два параллельно работающих турбогенератора.
Как же проходило испытание турбогенераторов?
Основная трудность заключалась в том, что регуляторы напряжения в ходе работы потребовалось заменить новыми, более совершенными, обеспечивающими автоматическое поддерживание напряжения даже в условиях большой перегрузки.
Швартовные испытания продолжались. В январе 1959 г. турбогенераторы со всеми обслуживающими их механизмами и автоматами были налажены и проверены. Одновременно с испытанием вспомогательных турбогенераторов прошли испытания электронасосов, вентиляционной системы и другого оборудования.
Пока испытывались механизмы, полным ходом проводились и другие работы.

Успешно выполняя свои обязательства, адмиралтейцы в апреле закончили испытания всех главных турбогенераторов и гребных электродвигателей. Результаты испытаний оказались отличными. Подтвердились все расчетные данные, сделанные учеными, конструкторами, проектировщиками. Первый этап испытаний атомохода был закончен. И закончен Успешно!

В апреле 1959 г.
В дело вступили монтажники трюмного отделения.

Первенец советского атомного флота ледокол "Ленин" -судно, прекрасно оборудованное всеми средствами современной радиосвязи, локационными установками, новейшим навигационным оборудованием. На ледоколе установлены два радиолокатора - ближнего и дальнего действия. Первый предназначен для решения оперативных навигационных задач, второй - для наблюдения за окружающей обстановкой и вертолетом. Кроме того, он должен дублировать локатор ближнего действия в условиях снегопада или дождя.

Аппаратура, размещенная в носовой и кормовой радиорубках, обеспечит надежную связь с берегом, с другими судами и с самолетами. Внутрисудовая связь осуществляется автоматической телефонной станцией на 100 номеров, отдельными телефонами в различных помещениях, а также мощной общесудовой радиотрансляционной сетью.
Работы по монтажу и регулировке средств связи вели специальные бригады монтажников.
Ответственную работу провели электромонтажники по вводу в действие электрорадиоаппаратуры и различных приборов в ходовой рубке.

Атомоход сможет долго плавать без захода в порты. Значит очень важно, где и как будет жить экипаж. Вот почему при создании проекта ледокола особое внимание было уделено жилищно-бытовым условиям команды.

Далее жилые комнаты

. .. Длинные светлые коридоры. Вдоль них расположены матросские каюты, в основном, одноместные, реже - на двух человек. Днем одно из спальных мест убирается в нишу, другое превращается в диван. В каюте, против дивана, - письменный стол и вращающееся кресло. Над столом - часы и полка для книг. Рядом - шкафы для одежды и личных вещей.
В небольшом входном тамбуре находится еще один шкаф - специально для верхней одежды. Над небольшим фаянсовым умывальником укреплено зеркало. Горячая и холодная вода в кранах - круглые сутки. Словом, уютная современная малогабаритная квартира.

Во всех помещениях люминесцентное освещение. Электропроводка скрыта под зашивкой, ее не видно. Стеклянные экраны молочного цвета закрывают лампы дневного света от резких прямых лучей. У каждого спального места небольшой светильник, дающий мягкий розовый свет. После трудового дня, придя к себе в уютную каюту, моряк сможет прекрасно отдохнуть, почитать, послушать радио, музыку...

Есть на ледоколе и бытовые мастерские -сапожная и портновская; имеются парикмахерская, механическая прачечная бани душевые.
Возвращаемся к центральной лестнице

Поднимаемся к каюте капитана

Более полутора тысяч шкафов, кресел, диванов, полочек заняли свои места в каютах и служебных помещениях. Правда, все это изготовляли не только деревообделочники Адмиралтейского завода, но и рабочие мебельной фабрики № 3, завода имени А. Жданова, фабрики "Интурист". Адмиралтейцы же сделали 60 отдельных гарнитуров мебели, а также различные платяные шкафы, койки, столы, подвесные шкафчики и тумбочки - красивую добротную мебель.

Начнём с самого названия судна: как видно на фото, оно не переведено на английский, а транслитерировано. Такова практика международного судоходства.

Атомный ледокол "50 лет Победы" (ранее "Урал") является крупнейшим в мире. Его строительство велось на Балтийском заводе г.Ленинграда (ныне Санкт-Петербурга) начиная с 4 октября 1989 г. На воду судно было спущено уже в декабре 1993 г., но в виду сложившейся в стране обстановки, повлекшей приостановку финансирования проекта, строительство на долгие годы было заморожено и возобновлено только в 2003 г. После этого 1 февраля 2007 г. ледокол впервые вышел на ходовые испытания в Финский залив, и 23 марта того же года на нём был поднят флаг. В завершение, 11 апреля 2007 г. судно прибыло в постоянный порт приписки г.Мурманск.

Основные характеристики и данные:

Тоннаж: 22,33 / 25,84 тысяч тонн
Длина: 159,6 м
Ширина: 30 м
Высота: 17,2 м (высота борта)
Средняя осадка: 11 м
Силовая установка: 2 ядерных реактора
Винты: 3 винта фиксированного шага с 4 съёмными лопастями
Мощность: 75 000 л. с.
Скорость: макс. 21,4 узлов
Автономность плавания: 7,5 мес. (по провизии)
Экипаж: 138 человек. После ряда сокращений уменьшен до 106 человек

Любой механизм начинается с управления, управление же судна, в частности гребным и рулевым механизмами осуществляется с мостика:

Управляя штурвалом на мостике, рулевой приводит в движение гидравлическую рулевую систему, находящуюся в другом конце судна. На фото изображён вал, поворачивающий руль в соответствии с поворотом штурвала:

Как уже было указано в основных характеристиках, силовой установкой, то есть сердцем ледокола является силовая установка, состоящая из двух ядерных реакторов. На судне было два места, где съёмка запрещена: это пункт наблюдения за самими реакторами и центральный пункт управления.

Если вкратце обрисовать принцип получения энергии с помощью реакторов, то он будет выглядеть следующим образом: в процессе деления урана 235 образуется пар под давлением около 30 кубических метром на квадратный сантиметр, с помощью электрогенератора он преобразуется электричество и подаётся на электродвигатели, вращающие винты.

Электрогенераторы, подающие ток на электродвигатели:

Чтобы ориентироваться во всей системе ледокола, даже для стандартного моряка требуется как минимум 3 года подготовки, поэтому экипаж укомплектовывается выпускниками специализированных вузов, таких как Государственная морская академия им. адмирала С.О. Макарова.




В этом помещении расположены электродвигатели, которые с помощью силы тока приводят в движение оси, соединённые с гребными винтами:

Два электродвигателя боковых винтов расположены в одном помещении, электродвигатель, вращающий центральный винт, находится в соседнем. На фото: электродвигатель одного из боковых винтов.

А это смежная электроустановка:

На ледоколе повсюду встречаются напоминания о том, что необходимо сделать, и что делать нельзя:







Радиорубка:

Нормы приличия соблюдаются строго:

Одного заряда уранового топлива хватает на 5-6 лет непрерывной эксплуатации, т.е. всё это время судно может фактически находиться в море, не возвращаясь в порт...если бы не необходимость в провизии: одной загрузки продовольствия достаточно для 7 месяцев плавания - в любом случае солидный срок. Но как быть с водой?
Для обеспечения пресной водой нужд экипажа и оборудования на судне установлены опреснители морской воды, способные выдавать 120 тонн пресной воды в сутки. Соляной остаток, выделяемый из этой воды, подходит для пищевой продукции, но за ненадобностью сбрасывается за борт.

Стоит отметить, что перемещение по внутренностям ледокола - это своего рода физическое упражнение,т.к. оно сопряжено с постоянными спусками и подъёмами по крутым и узким лестницам:

Если двигательное оборудование ледокола полностью российского производства, то навигационное - всё японское:

Знакомство с бортовым бытом команды я решил оставить на окончание экспедиции, о чём в итоге пришлось сильно пожалеть,потому что именно в конце пути мы попали в сильнейший шторм, который длился более двух суток. Разумеется, в таких условиях было не до съёмки. Всё что у меня осталось на эту тему - фотография столовой для экипажа:

Так выглядят интерьеры в надстройке судна. На фото: главная лестница.

Это кафетерий, где можно поиграть в дартс или кикер, посмотреть DVD или послушать музыку, почитать книгу или журнал, сыграть в какую-нибудь настольную игру или просто посидеть за чашкой кофе или чая:

Литература в кафетерии представлена на разных языках: на английском, русском, немецком и японском. Та же ситуация и с DVD, только вместо японского там преобладает китайский.

По соседству с кафетерием расположен бар, где можно посидеть на диване за бокалом чего-нибудь, любуясь через стекло иллюминатора видами моря:

В корме ледокола находится многофункциональный зал, где проводятся торжественные мероприятия, концерты, лекции и презентации:

Помимо этого, начиная от носа судна до его центральной части поверх ледокольного пояса также установлена дополнительная защита из нержавеющей стали толщиной 7 мм, способствующая снижению трения между корпусом и льдом.

Также ледокол оснащён специальным турбокомпрессором,который соединён с системой труб.По ней под низким давлением подаётся воздух,который выходит наружу через систему отверстий в носовой части судна.За счёт этого достигается дополнительное снижение трения между корпусом и льдом. При работе компрессора вода у носа ледокола выглядит так, словно кипит.

Так как ледокол - ядерный объект, ему необходима сверхпрочная защита, коей он в должной степени обеспечен. В случае если в борт отсека ядерного реактора ледокола на полном ходу врежется аналогичное судно, реактор не получит повреждений и сможет работать дальше. Аналогично и с верхней частью реакторного отсека: падение самолёта не нанесёт ущерба ядерной установке и не вызовет перебоев в работе. Но какие последствия вызовет ракетный удар, неизвестно, потому как судно это мирного назначения, и такие испытания не проводились.

Что касается прокладывания фарватера во льдах, то судно вовсе не режет лёд, как это может показаться, а именно раскалывает его, наседая на него носовой частью. Поэтому при движении через плотное ледовое покрытие раздаётся громкий звук от ударов носа о льдины, а корпус судна сильно вздрагивает.

На этом мой рассказ об устройстве ледокола подошёл к концу. впереди ждут истории об Арктике, Северном полюсе и Земле Франца-Иосифа.

Продолжение следует!

Еще несколько лет назад Балтийский завод в Санкт-Петербурге испытывал серьезные трудности и был на грани остановки, а этим летом со стапелей предприятия был спущен на воду корпус новейшего атомного ледокола «Арктика» — тезки ушедшего на покой прославленного советского корабля. Это новейшее судно с двухреакторной ядерной установкой сконструировано двухосадочным, то есть сможет осуществлять проводку транспортных судов как на глубоководных, так и мелководных участках Северного морского пути. Однако кроме атомных левиафанов вроде «Арктики» и его грядущих систершипов «Сибири» и «Урала», в наших высоких широтах востребованы и не столь мощные суда более скромных размеров. У этих ледоколов тоже есть свои задачи.

Ледоколу тесно

Словосочетание «скромные размеры» — последнее, что приходит в голову в цеху Выборгского судостроительного завода, где происходит монтаж блоков будущего ледокола. Огромные охристого цвета конструкции высотой с трех-четырехэтажный дом уходят под самый потолок полутемного заводского помещения. Временами то тут, то там вспыхивает голубоватое пламя сварки. Новая продукция ВСЗ не очень вписывается в старые габариты предприятия. «Нам пришлось переделать всю логистическую цепочку производства, — говорит Валерий Шорин, заслуженный работник предприятия, старший специалист по бизнес-проектам ВСЗ. — Раньше корпуса судов собирали на стапеле, а затем они поступали в док-камеру, которая заполнялась водой. Вода опускалась, оставляя корабль в специальном канале, через который открывался выход в море. Теперь это невозможно. Камера способна принять суда не шире 18 м».

Ведется строительство многофункционального ледокольного судна обеспечения для проводки нефтеналивных судов в Обской губе.

Сейчас на ВСЗ заканчивают строительство дизель-электрического ледокола «Новороссийск», относящегося к серии 21900 М. Два систершипа — «Владивосток» и «Мурманск» уже переданы заказчику, в качестве которого выступает «Росморпорт». Это, конечно, не суперсилачи типа «Арктики» (60 МВт), но энерговооруженность кораблей проекта 21900 М тоже впечатляет — 18 МВт. Длина ледокола — 119,4 м, ширина — 27,5. Док-камера по‑прежнему на месте. Ее серые бетонные стены, в швах которых поселилась мелкая растительность, теперь гостеприимно принимают на ремонт заводской буксир и другие не слишком габаритные суда. Ледокол туда уже не поместится. Вместо возведения второй, более широкой камеры на заводе нашли иное решение. За десять месяцев была построена баржа «Атлант», внушительных размеров сооружение длиной 135 и шириной 35 м. Баржа представляет собой плавучую площадку, по углам которой возвышаются технологические башни белого цвета — на них нанесена разметка. Теперь готовые блоки доставляются на баржу из цеха на сверхмощных трейлерах (самый большой из них способен перевозить детали массой до 300 т). На «Атланте» происходит сборка корпуса, и, как только он будет готов к спуску на воду, баржу отводят буксиром на глубокое место в море и заполняют водой ее балластные камеры. Площадка уходит под воду, а глубина ее погружения отслеживается как раз по меткам на технологических башнях. Будущее судно оказывается на плаву. Его отводят к пристани, после чего работы продолжаются. Баржа освобождается для нового корабля.


Уже спущенный на воду ледокол «Новороссийск» — последний из трех ледоколов проекта 21900 М, заказанных «Росморпортом».

Набегом против льдов

Что делает ледокол ледоколом? В принципе, ломать лед может любое судно, даже весельная лодка. Вопрос лишь в том, какой толщины этот лед. В Морском регистре существует классификация судов, которые имеют специальные свойства для преодоления льдов. Самая «слабая» категория — это Ice 1−3 (неарктические суда), затем следует Arc 6−9 (арктические суда). Но только корабли, попадающие под категорию Icebreaker, могут с полным правом считаться ледоколами. В категории четыре класса. Высший класс — девятый — принадлежит атомным ледоколам, которые способны непрерывным ходом преодолевать поле ровного льда толщиной до 2,5 м. А если лед толще? Такое вполне может быть в постоянно замерзших арктических морях, где лед не тает по весне, а нарастает годами. Осложняют прохождение и торосы. В этом случае от ломки льда непрерывным ходом приходится отказываться. Если ледоколу не хватает мощности для преодоления льдов, используется методика «набегов». Судно отходит от препятствия на несколько корпусов назад, а затем снова устремляется вперед и «с разбега» вскакивает на льдину. Также существует метод ломки льда кормой, куда для увеличения массы, воздействующей на лед, перекачивается балластная вода из других частей корпуса. Возможен и обратный вариант, когда вода перекачивается в нос судна. Или в резервуар на одном из бортов. Это работа креновой и дифферентной систем, помогающих ледоколу ломать лед и не застревать в проделанном канале. Четвертый метод доступен лишь уникальному в своем роде первому в мире асимметричному ледоколу «Балтика», который за счет нестандартной формы корпуса может двигаться боком, ломая при этом лед и образуя канал такой ширины, который прочим ледоколам недоступен.


Два ледокола — «Москва» и «Санкт-Петербург», построенные на Балтийском заводе (Санкт-Петербург) в рамках проекта 21900, относились к классу Icebreaker 6. Модернизированные ледоколы проекта 21900 М, выпуск которых освоил ВСЗ, усилены и доработаны до класса Icebreaker 7. При движении непрерывным ходом они способны ломать лед толщиной 1,5−1,6 м, а при использовании кормы им покоряется толщина 1,3 м. Это значит, что достраиваемый сейчас «Новороссийск» сможет работать не только на Балтике, где толщина льда практически никогда не превышает 90 см, но и в арктических морях — правда, преимущественно в весенне-летний период.


Вот из таких огромных блоков на барже «Атлант» собирают корпуса ледоколов на Выборгском судостроительном заводе, входящем в Объединенную судостроительную корпорацию. Как только корпус готов, его спускают на воду, и достройка судна продолжается.

Качка на чистой воде

При том что ледоколы проекта 21900 М не имеют тех возможностей, которые есть у судов класса Icebreaker 9, конструктивно их многое роднит, так как классическая конструкция ледокола уже давно придумана и отработана. «По форме корпус ледокола похож на яйцо. — говорит Борис Кондрашов, капитан буксира ВСЗ, заместитель капитана завода. — На нем снизу почти нет выступающих частей. Такая форма позволяет эффективно расталкивать сломанный усиленным форштевнем лед, уводить обломки льдин вниз, под лед, обрамляющий канал. Но с этой формой связана одна особенность ледоколов: на чистой воде судно испытывает мощную качку даже от небольшой волны. В то же время при прохождении ледяных полей корпус судна занимает стабильное положение». Ледовое поле, по которому движется ледокол, не стоит на месте. Под воздействием течения или ветра оно может приходить в движение и напирать на борт ледокола. Сопротивляться давлению огромной массы крайне тяжело, остановить ее невозможно. Известны случаи, когда лед буквально наползал на палубу ледокола. Но форма корпуса и усиленный ледовый пояс, проходящий в районе ватерлинии, не позволяют льду раздавить судно, хотя большие вмятины глубиной до полуметра на бортах остаются нередко.


1. В штатном режиме ледокол ломает лед, двигаясь непрерывным ходом. Судно рассекает лед усиленным форштевнем и раздвигает льдины носом особой округлой формы. 2. Если ледоколу встречается лед, для ломки которого непрерывным ходом судну не хватает мощности, используется метод набегов. Ледокол отходит назад, затем с разбегу наскакивает на льдину и давит ее своим весом. 3. Еще один вариант борьбы с толстым льдом — движение кормой.

Изменения, внесенные в модифицированную версию ледокола 21900, коснулись, в частности, и ледового пояса. Он усилен дополнительным 5-мм слоем нержавеющей стали. Доработке подверглись и другие узлы. В отличие от классических судов с гребными винтами, ледоколы проекта 21900 М оснащены двумя винторулевыми колонками. Это не новомодные азиподы, в гондоле каждого из которых помещается электрический двигатель, но их функциональный аналог. Колонки могут поворачиваться на 180 градусов в любую сторону, что обеспечивает судну высочайшую маневренность. В дополнение к колонкам, размещенным на корме, на носу корабля есть подруливающее устройство в виде винта в кольцевом обтекателе. Что особенно интересно, винты не только выполняют роль движителя, но и имеют достаточную прочность для того, чтобы принимать участие в борьбе со льдом. При работе кормой винты винторулевых колонок дробят лед, фрезеровать лед способно также и подруливающее устройство. Оно, кстати, имеет и еще одну функцию — откачивать воду из-подо льда, на штурм которого идет судно. Лишившись на мгновение опоры в виде водной толщи, лед легче ломается под тяжестью носа.


Новинки для Обской губы

А что будет, если ледокол типа 21900 М налетит на айсберг, подобный тому, что погубил «Титаник»? «Судно получит повреждения, но останется на плаву, — говорит Валерий Шорин. — Однако в наши дни такая ситуация маловероятна. Даже катастрофа «Титаника» стала проявлением халатности — про наличие айсбергов в районе катастрофы было известно, но капитан не снижал хода. Сейчас же поверхность океана постоянно подвергается мониторингу из космоса, и эти данные доступны в реальном времени. Кроме того, в носовой части ледоколов 21900 М находится вертолетная площадка. Взлетая с нее, корабельный вертолет может регулярно проводить ледовую разведку и определять оптимальный маршрут движения». Но может быть, пришло время заменить тяжелый и дорогой вертолет легкими дронами? «Мы не исключаем использование в будущем дронов на борту ледокола, — объясняет Валерий Шорин, — но от вертолета отказываться пока не намерены. Ведь в критической ситуации он может выступать в роли спасательного средства».

Многофункциональность — лозунг нашего времени. Ледоколы, выпускаемые на ВСЗ, способны не только прокладывать каналы во льдах, обеспечивая прохождение транспортных судов, но и участвовать в аварийно-спасательных операциях, выполнять разного рода работы в местах морской добычи углеводородов, прокладывать трубы, тушить пожары. Такая универсальность сейчас особенно востребована в районах активного хозяйственного освоения Арктики. Пока у причала достраивают «Новороссийск» — последний ледокол серии 21900 М, — на барже «Атлант» идет сборка корпуса многофункционального ледокольного судна обеспечения для работы в районе Новопортовского нефтяного месторождения на западе Обской губы. Таких кораблей будет два, оба превосходят по мощности проект 21900 М (22 МВт против 16) и принадлежат к классу Icebreaker 8, то есть смогут взламывать непрерывным ходом льды до 2 м толщиной и вести за собой нефтеналивные суда. Ледокольные суда рассчитаны на работу при температурах до -50°С, то есть выдержат самые суровые арктические условия. Корабли смогут выполнять множество функций вплоть до размещения на борту медицинского стационара.


Там же, на Обской губе, реализуется крупный международный проект по производству сжиженного природного газа — «Ямал СПГ». Танкеры с «голубым топливом» будут предназначаться преимущественно европейским потребителям. Эти танкеры ледового класса строятся на верфях Японии и Южной Кореи, но проводить их во льдах предстоит ледокольным судам российского производства. Контракт на строительство двух ледоколов для «Ямал-СПГ» уже подписан Выборгским судостроительным заводом.

Чтобы дополнить картину современного российского ледоколостроения, стоит упомянуть и еще об одной ожидающейся вскоре новинке — самом мощном в мире неатомном ледоколе. Судно «Виктор Черномырдин», которое строится на Балтийском заводе по заказу «Росморпорта», будет обладать мощностью 25 МВт и сможет, двигаясь непрерывным ходом назад или вперед, ломать льды толщиной до двух метров.